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Abstract: Oxygen delignification studies were carried out using a softwood kraft
pulp under varying reaction temperatures (80–140◦C) and alkaline charges (1–12%).
Near-infrared (NIR) spectroscopy combined with chemometric methods was employed
to analyze oxygen delignification pulp yields, which were compared to gravimetric
analysis. Principal component analysis (PCA) of the NIR spectra data was performed
and a partial least-square (PLS) regression model was developed to predict the pulp
yield of oxygen delignified pulps based on the NIR spectra data. PCA analysis indicated
that 99.1% of total variances of NIR spectra data in the range of 1100–2266 nm could
be expressed by three principle components. A PLS1 model based on the NIR spectra
data had good predictive ability and appeared to be an effective tool for pulp yield
prediction for the oxygen delignification process.
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Determining Oxygen Delignification Yield 123

INTRODUCTION

Advances in near-infrared (NIR) spectroscopy and chemometric analysis have
combined to provide a powerful practical technology for a host of process
chemistry applications. An examination of the literature demonstrates the ap-
plication of NIR spectrometry for several industries, including chemicals,[1]

food,[2,3] pharmaceutical,[4] polymer,[5,6] and pulp and paper.[7] These appli-
cations are being developed in light of several practical advantages of NIR
for on-line/at-line process analysis. For example, NIR spectroscopy readily
facilitates low-cost nondestructive in-situ testing with a non-contact probe and
optical fiber. The ability of NIR spectroscopy to characterize liquid and solid
samples with little or no pretreatment, to provide quick spectral data and to
predict physical and chemical parameters from the spectral data ensures its
continuing application as an analytical tool for process chemistry.

The burgeoning field of biomass processing either for conventional pulp
and paper applications or for biofuels/biochemicals processes can clearly ben-
efit from NIR spectroscopy analysis. The chemical characterization of fibrous
biomass with its multi-component chemical constituents provides a challenge
that few other analytical methods can adequately characterize in an on-line
manner. Sanderson et al.[8] demonstrated that NIR could be employed for lig-
nocellulose analysis of a broad range of biomass feedstocks and with proper
models yielded a technique that could be useful for rapid analysis of biomass.
Studies by Kelley et al.[9] illustrated that this technique coupled with multi-
variate analysis techniques could be used to predict chemical compositions of
disparate agricultural biomass samples.

The benefits of characterizing biomass have drawn the attention of several
researchers in the forest products sector. The application of NIR has been used to
characterize the chemical constituents,[10,11] physical[12,13] and mechanical[14]

properties of wood. Fardim et al. and others have employed NIR spectroscopy
and multivariate data analysis to develop a predictive models for the chemical
composition and physicochemical characteristics of unbleached and bleached
kraft pulps.[15–20] This analytical procedure has facilitated rapid spectroscopic
determination of pulp viscosity, kappa number, brightness, and contents of
glucan, xylan, uronic acids, and lignin in pulp. Although most of these studies
have been directed at laboratory studies, research activities at characterizing
mill-pulping liquors have demonstrated the application of these technologies
for novel mill process sensors.[21]

A key parameter in the conversion of wood into paper is pulp yield, es-
pecially for kraft pulping and the initial stages of a modern bleach sequence.
Indeed, over the past decade increased research efforts have been directed at im-
proving the selectivity of oxygen (O) delignification of kraft pulps.[22] Oxygen-
stage chemistry relies on elevated temperatures, sodium hydroxide, and oxygen
pressure to oxidatively remove lignin in an environmentally benign manner. The
oxidative degradation of lignin is initiated by single electron reactions involving
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124 Y. Pu et al.

phenolate anions of lignin and the ground state oxygen. Typically, 30–50% of
the residual lignin in kraft pulp is removed during oxygen delignification. Al-
though additional lignin removal is possible, the chemical selectivity between
lignin and pulp polysaccharides begins to decrease, resulting in decreased pulp
yield and diminished physical strength properties. Recently, studies by Pu et al.
and others have reported several strategies to maximize lignin removal and pulp
yield from an O and double oxygen (OO)-stages.[22–25] A key challenge for
the effective utilization of these technologies is the need to efficiently monitor
pulp yields in a practical industrial setting.[26,27]

In this study, changes in oxygen delignification pulp yield for a soft-
wood kraft pulp were evaluated gravimetrically and by NIR spectroscopy under
varying reaction temperatures and sodium hydroxide charges. Two multivariate
analysis methods, principle component analysis (PCA) and partial least-squares
(PLS) regression, were employed to correlate NIR spectroscopic data with pulp
yield results. The results of these studies provide a rapid, facile methodology
to predict pulp yield for oxygen delignification.

EXPERIMENTAL

Chemicals and Materials

All chemical reagents were commercially purchased and used as received. A
softwood (SW) kraft pulp (kappa number 29.4) was acquired from a commercial
kraft pulp mill operating in the southeastern USA. The pulp was washed with
distilled water until the effluents were pH neutral and colorless. This pulp was
air-dried and stored at 2◦C prior to usage.

Oxygen Delignification

Oxygen delignification of a softwood kraft pulp was accomplished using a Parr
reactor.[24,25] The pulp was well mixed with the desired amount of chemicals
and charged into the reactor pre-warmed to 70◦C. The reactor was sealed,
rapidly heated up to a desired temperature while mixing and pressurized with
oxygen. Upon completion, heating was halted, oxygen pressure was released
and the pulp was discharged, water-washed, and air-dried. Table 1 summarizes
the oxygen delignification conditions employed. Reaction temperatures and
alkali charges were varied to obtain oxygen delignified pulps with a yield
range of 86–99%. The statistical summary for oxygen delignification samples
prepared with different parameters is shown in Table 2.

Pulp Analysis and Handsheet Preparation

Oxygen delignification pulp yield was gravimetrically determined based on
the oven-dried weight of pre- and post-oxygen delignified kraft pulps. Kappa
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Determining Oxygen Delignification Yield 125

Table 1. Oxygen delignification conditions

Temperature, ◦C 80.0–140.0

NaOH charge, % 1.0–12.0
MgSO4, % 0.05
O2 pressure, N/m2 6.2 × 105

Consistency, % 10.0
Time, min 60.0

number of the oxygen delignified pulps was measured following standard Tappi
test method T 236 om-99. Kappa number measurement had a standard deviation
of 0.25 kappa units with three replicates. Handsheets for NIR analysis were
prepared according to Tappi method T 272 sp-02.

NIR Measurements

NIR spectra of the handsheet samples were measured in the diffuse reflectance
mode using a Lambda 900 UV/VIS/NIR Spectrometer (PerkinElmer Inc.,
USA). Spectra absorbance data are collected at 1.0 nm wavelength intervals
over the range of 1100–2500 nm. Eight scans were taken for each handsheet
and 32 scans were accumulated for each sample. Absorbance (A) values were
converted from reflectance (R) values using the formula A = log(1/R). The
NIR spectra results were averaged for each sample and the averaged data was
used for multivariate analysis.

Multivariate Analysis

Principal component analysis (PCA) is a mathematical method for multivari-
ate analysis dealing with large multi-dimensional data sets, yielding fewer
principal components (PCs), which account for as much as possible of the
variability of the data.[28,29] PCA enables one to perform data description and
interpretation with significantly fewer variables than originally present. The
PCs are uncorrelated to each other, with the first principal component (PC1)
carrying the greatest amount of variation and the second principal component
(PC2) carrying the maximum share of the residual information, and so on. PCA

Table 2. Statistical summary for the oxygen delignified pulp samples

Min. Max. Avg. Std. dev.

Yield, % 86.7 9.3 94.4 3.7
Delignification, % 25.7 84.1 57.7 17.1
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126 Y. Pu et al.

computes each principal component as linear summation of the original data
multiplied by a coefficient. The original data matrix (X) can be decomposed
into score matrix (S) and loading matrix (L) after PCA decomposition. The S
matrix contains score vectors that describe the sample patterns and generally
show sample difference or similarities, whereas the L matrix contains loading
vectors that describe the variable relationships.

Partial least-squares (PLS) regression is a predictive technique that decom-
poses both independent and response variables matrices simultaneously.[28,29]

PLS maximizes the correlation between independent and response variables
matrices and the latent variables in a independent matrix is modeled to predict
response variables the best. In PLS modeling, there are generally two PLS algo-
rithms: PLS1 and PLS2. PLS1 deals with only one response variable at a time,
whereas PLS2 calculates several response variables simultaneously. Explained
variances in a PLS model are used to indicate how much of the information
the model can describe in the original data matrices. Root-mean-square error
of calibration (RMSEC) is calculated from average difference between pre-
dicted and measured response values for calibration samples (see Eq. 1)).[28,29]

Root-mean-square error of prediction (RMSEP) is square root of the average
of squared differences between predicted and measured response values of
validation samples, as shown in Eq. (2).

RMSEC =
√√√√1

n

n∑
i=1

(y∗
c − yc)i (1)

RMSEP =
√√√√1

n

n∑
i=1

(y∗
v − yv)i (2)

where n is number of samples; y∗
c and yc are predicted and measured response

value for calibration samples, respectively; y∗
v and yv are predicted and mea-

sured response value for validation samples, respectively. RMSEC is usually
used to show an average modeling error. RMSEP measures the average predic-
tion error in a model and tells an expected deviation in a future prediction.

The multivariate analysis was carried out by using the Unscrambler soft-
ware (Unscrambler 9.2, CAMO Software Inc., USA). The NIR spectra data of
oxygen delignified pulps was transformed into data matrices and subjected to
principle component analysis and partial least-square regression. Since there is
only one response variable, that is, yield, PLS1 was employed to develop the
yield prediction model for the oxygen delignified pulps. The PLS1 regression
model was built with full cross validation procedure during calibration step.
Full cross validation is considered an efficient way of model building for rather
small amounts of samples in which all the samples are used for both model
calibration and validation.[29,30] In full cross validation, one sample is kept out
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Determining Oxygen Delignification Yield 127

of the calibration data set at a time and the model is calibrated on the remaining
samples. The left-out sample is then used for prediction with the built model
and a predicted residual is computed. This process is repeated until all samples
have been kept out once.

RESULTS AND DISCUSSION

Oxygen Delignification

A series of oxygen delignification experiments were carried out to produce
pulps with a wide range of yields. Table 3 summarized the yield and delig-
nification results under varying reaction temperatures and alkaline charges.
Two-way analysis of variance (ANOVA) was carried out to investigate the ef-
fects of temperature and alkali charge on O-delignification yield. The ANOVA
results were presented in Table 4. Both temperature and alkali charge had a
larger F-ratio value than the critical value of F0.05, indicating that both tempera-
ture and alkali charge had a significant effect on the O-delignification yield. The
F-ratio value for temperature was further observed to be larger than the critical

Table 3. Oxygen delignification of a softwood kraft pulp

Temperature, Alkaline Charge, Yield, Delignification,∗

Sample # ◦C wt% Wt% %

80-1 80 1.0 99.3 25.7
80-3 80 3.0 97.9 40.4
80-6 80 6.0 97.0 45.9
80-9 80 9.0 98.0 40.7
80-12 80 12.0 97.0 40.9

100-1 100 1.0 97.8 44.4
100-6 100 6.0 95.8 61.9
100-12 100 12.0 95.3 62.4
110-1 110 1.0 98.5 36.0
110-3 110 3.0 96.1 60.8
110-6 110 6.0 92.8 64.0
110-9 110 9.0 92.0 71.5
110-12 110 12.0 91.6 66.4
140-1 140 1.0 94.6 60.4
140-3 140 3.0 91.1 76.5
140-6 140 6.0 90.0 75.2
140-9 140 9.0 88.5 81.0
140-12 140 12.0 86.7 84.1

∗Calculated from kappa number.
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128 Y. Pu et al.

Table 4. ANOVA results of temperature and alkali charge for oxygen delig-
nification yield∗

Source of Sum of Degree of
variance square freedom Variance F-ratio F0.05 F0.01

Temperature 146.81 2 73.40 39.83 4.46 8.65
Alkali charge 59.84 4 14.6 8.12 3.84 7.01
Error 14.74 8 1.84

∗With the assumption that yields are normally distributed and variances
are homogenous, and interaction between temperature and alkali charge is
not taken into account.

value of F0.01, suggesting that the effect of temperature on O-delignification
yield was very significant.

Figure 1 shows the relationship of pulp yield versus temperature and alkali
charge for oxygen delignification. High temperature and high alkaline charge
were observed to result in a decreased yield for the oxygen delignified pulp.
Oxygen-delignification under the most drastic conditions (i.e., 140◦C and 12%
alkaline charge) had a low yield of 86.7%. Figure 2 summarized the relationship
between pulp yield versus delignification ratio for the post-oxygen delignified
pulps. The extent of pulp yield decrease was enhanced once approximately
60% delignification was accomplished. When 84.1% of residual lignin in the
original pulp was removed under aggressive reaction conditions, the pulp yield
decreased to 86.7%.

Figure 1. Pulp yield versus temperature and alkali charge (AA) for oxygen delignifi-
cation.
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Figure 2. Pulp yield versus delignification ratio for a series of oxygen delignification.

NIR Spectroscopy

A typical near-infrared spectrum from 1100 to 2500 nm is presented in
Figure 3 and this data is consistent with NIR data presented by Michell et
al. for wood samples.[31] Three prominent bands were observed in the regions
from 1328–1671, 1868–1999, and 2013–2220 nm. The band in the region from
1328–1671 nm corresponds primarily to the first overtone of C H and O-
H stretching vibrations, whereas the band in the region from 1868–1999 nm
was assigned to the combinations of O-H stretching and bending vibrations
as well as second overtone of C O stretching vibrations.[32] The peaks near
2102 nm were assigned to combinations of O H, C H stretching vibrations

Figure 3. Typical NIR spectrum of oxygen-delignified pulp.
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130 Y. Pu et al.

in the cellulose and xylan molecules.[31] A weak second overtone of C H
stretching vibrations appeared near 1216 nm. Two strong bands appeared near
1484 nm and 1928 nm, which have been assigned to vibrations from hydrated
cellulose.[32] Aromatic functionalities from lignin were reported to appear at
1143 nm (second overtone of C H stretching), 1445 and 1678 nm (first over-
tone of C H stretching), and 2136 nm (C H, C C combinations).[30,31,33] All
the oxygen-delignified pulps showed similar patterns in their NIR spectra. As
discussed earlier, the NIR spectroscopic data contains broad vibration bands
derived from C H, O H and aromatic functional groups from major chemical
constituents of kraft pulps (i.e., cellulose, hemicellulose and lignin). Hence, it
was anticipated that the NIR spectral data from a series of closely related pulps
could be used to develop a predictive pulp yield model with the assistance of
chemometric analysis.

Principal Component Analysis

PCA analysis was carried out in the range of 1100–2266 nm in the NIR spectra
of pulps where most features attributed to the molecular bond vibrations in
various pulp components were observed. The NIR spectra were considered
a data matrix in the range of 1100–2266 nm and principal components were
determined by the use of cross validation. As a result, 99.1% of total variances
of the original data set was expressed by three principle components with PC1

taking into account of 95.0% of total variance, PC2 3.2% and PC3 0.9%, re-
spectively. This indicated that three principle components were able to describe
the majority of variance in the NIR spectra, which was promising for partial
least square regression model development.

Figure 4 showed a loading plot for the first principal component (PC1).
The highest loadings along the PC1 appeared at the bands at 1915 and 1938
nm and a relatively low loading emerged at the bands peaked at 1418 nm. The
bands near 1915 and 1938 nm were reported primarily from combinations of
O-H vibrations in water and wood components.[31] Bassett et al. has observed
strong absorbance signals near 1915 and 1938 nm derived from combinations
of O-H in the cellulose.[32] The sugar and lignin analysis results showed that
the oxygen-delignified pulps contained 78.0–85.0% cellulose, 7.0–8.5% xylan,
5.0–7.5% mannan, and 0.8–3.5% lignin.[34] With the cellulose content being
around 80% in the pulp samples, the high loading signals near 1915 and 1938
nm along the PC1 might suggest that PC1 had a positive relationship with
cellulose. The two peaks at 1915 and 1938 nm with high loadings along the
PC1 were observed to be highly positively correlated. Interestingly, all the
bands along the PC1 positively correlated with a positive loading. Figure 5
illustrates a score plot of PC1 versus PC2. The samples were spread along the
PC1 in accordance with the differences in temperature employed for the oxygen
delignification. Samples with high temperatures (140◦C) were located in the
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Figure 4. Loading plot for the first principal component from principal component
analysis of NIR spectra.

left side of PC1, whereas samples with intermediate temperatures (110 and
100◦C) and low temperatures (80◦C) were positioned in the middle and right
side of PC1, respectively. No noticeable sample grouping was observed along
the PC2. The temperature parameter appeared to play the most critical role in
the pulp yield for oxygen delignification, with high temperature resulting in
a decreased pulp yield. This was in accordance with the foregoing ANOVA
results that temperature had a very significant effect on oxygen delignification
yield.

Figure 5. Score plot (PC1 versus PC2) from principal component analysis of NIR
spectra.
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132 Y. Pu et al.

Table 5. Quality parameters for the PLS1 regression model at dif-
ferent principal components built based on NIR spectra

PCs X-expla % Y-explb % RMSECc wt% RMSEPd wt%

1 95.9 94.7 0.88 1.05
2 98.5 96.3 0.75 0.93
3 99.3 97.6 0.60 0.87
4 99.5 99.9 0.08 0.12

aExplained variance in X matrix (NIR spectra).
bexplained variance in Y matrix (yield).
cRoot-mean-square error of calibration.
dRoot-mean-square error of prediction.

Partial Least-Square Modeling

PLS1 algorithm was used for modeling the pulp yield and NIR spectra data for
oxygen delignification. NIR spectra data in the range of 1100–2266 nm were
used as the independent variables matrix X and pulp yield was employed as the
response variable matrix Y. The number of principal components that optimally
predict the pulp yield were determined by cross validation and monitored with
RMSEC and RMSEP. Table 5 listed some of the quality parameters of the
built models at differing numbers of principal components. As an additional
PC was introduced, the RMSEC decreased because the PCs were generated
in such a way that the residuals calculated from calibration samples were
minimized. However, improved model fit with a minimized RMSEC could be
over-fitted and would not lead to a model with enhanced predictive ability. If
the introduced PC primarily carries noise or spectral regions not related to the
pulp yield, the model would fail to predict pulp yield without optimal accuracy,
indicated by an increased RMSEP value. The optimal number of principal
components was selected from the point where RMSEP had a minimum or
leveled off.[30] In this study, the RMSEP value of PLS1 model continued to
decrease until the regression model consisted of four PCs with a leveled-off
value of RMSEP of 0.12. The PLS1 model with four PCs captured the majority
of the systemic variation in the data matrices with 99.5% of variance in X
variables (NIR spectra data) and 99.9% of variance in Y variables (pulp yield)
described.

Figure 6 showed the correlation of predicted versus gravimetrically mea-
sured pulp yield for the PLS1 model with four PCs using NIR spectra data.
A high correlation coefficient of 0.99 was observed. To further validate this
model, a set of five oxygen delignified pulp yields were predicted using the
PLS1 model based on their NIR spectra data. Figure 7 summarized predicted
yield results based on NIR data versus experimentally measured yield values
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Figure 6. Correlation of measured pulp yield to predicted yield from PLS model with
4 principal components for calibration samples. R2: correlation coefficient.

based on oven dried pulp measurements. The predicted values were in good
agreement with the measured values with a correlation coefficient of 0.94 and a
SEP of 0.97. This indicated that the PLS1 model built based on the NIR spectra
data had good predictive ability and could be used for pulp yield prediction in
oxygen delignification.
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Figure 7. Plot of correlation between measured and predicted oxygen delignification
pulp yield with PLS model using NIR spectra data. SEP: Standard error of prediction;
RPD: Ratio of performance to deviation.
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134 Y. Pu et al.

CONCLUSIONS

Near-infrared spectroscopy combined with chemometric analysis provided an
effective tool for predicting oxygen delignification pulp yields. Principal com-
ponent analysis demonstrated that 99.1% of total variances of NIR spectra data
of oxygen delignified pulp samples in the range of 1100–2266 nm could be
expressed by three principal components. PLS1 model developed with NIR
spectra data had good predictive ability with a correlation coefficient of 0.94
between prediction and measured pulp yield. A PLS1 model built with pulp
NIR spectra appeared to be an effective methodology for pulp yield prediction
after oxygen delignification.
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